
  
Abstract— Decision making in perceptual tasks is considered as a 

process of accumulation of evidence for a particular response that 
depends on the task difficulty, the instruction, and the non-decision 
processes. We performed a study on discrimination of simulated 
heading direction based on form and motion cues with different age 
groups in a task where the observers determined the time to respond. In 
the single-cue conditions, the stimuli were either radial Glass patterns 
supposed to provide information similar to motion streaks in real 
motion or moving radial patterns. In the combined condition the 
motion and form information provided consistent information about 
the simulated heading as the dots in the Glass patterns moved along 
trajectories parallel to the orientation of the dot pairs. When compared 
to optimal cue combination, the accuracy performance in combined 
condition greatly exceeded the predictions. Applying a hierarchical 
drift diffusion modeling on the reaction time and the observers’ 
responses we showed that the conditions requiring temporal 
integration increase the time for the non-decision processing, while the 
information reliability changes the rate of evidence accumulation for a 
particular response. Moreover, age affects the amount of necessary 
evidence for making a decision and the non-decision time. The rate of 
evidence accumulation in elderly is lowered in conditions requiring 
spatial information integration. 
 

Keywords—Cue combination, Decision making, heading, form, 
motion.  

I. INTRODUCTION 
The survival of the individual greatly depends on the ability 

to make context-dependent perceptual decisions in ambiguous 
and uncertain situations. The process of decision making has 
attracted a lot of interests and efforts both of theorists and 
experimentalists. The mathematical description of these 
processes relies on the idea that the observed behavior 
represented by the response time and performance accuracy 
could be decomposed in latent processes, e.g. [1]. The 
perceptual decision is regarded as a process of accumulation of 
evidence for a certain alternative and the initiation of response 
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as soon as a decision boundary for this decision is reached. Two 
major classes of models exist that differ in the way they describe 
the process of evidence accumulation. In the race models like 
the Linear Ballistic Accumulator Model [2] it is assumed the 
process of evidence accumulation is independent for each 
alternative. In the drift diffusion models [3] a single process of 
evidence accumulation for the two alternatives is supposed and 
it is represented as the difference in the evidence for each of 
them. The accumulation of evidence is regarded as a stochastic 
noisy diffusion process. The quality of the sensory information 
affects the rate of evidence accumulation, while the instruction 
or personal traits like being more cautious could affect the width 
of the decision boundary between the two alternatives. The 
unequal probability of occurrence or reward as well as response 
biases might affect the relative position of the starting point of 
evidence accumulation with respect to the upper and lower 
decision boundaries. This implies that changing the richness of 
the available information will modify the rate of evidence 
accumulation.  

Several studies have shown improvements in subjects' ability 
to discriminate among stimuli in the presence of multiple cues 
and could well be described by combining the available 
information in an optimal way e.g. [4], [5], [6]. If optimal, in the 
multi-cue conditions, the performance is based on the sum of the 
information available in the single-cue conditions. However, in 
a recent study [7] that examines cue combination of visual and 
vestibular information in heading perception in a task where the 
subjects determined the time to response no gain was observed 
in the multisensory condition as compared to the single cues. 
The authors showed that the subjects still optimally combined 
the available evidence but the drop in performance with regard 
to the predictions of optimal cue combination was due to the 
decrease in the response time in the combined condition. They 
raised the question of evidence accumulation in the process of 
decision making when the reliability of the information varies in 
time.  

In the present study, we investigated the process of 
integration of form and motion information in heading in a task 
when the response is initiated by the observers in choosing 
between two alternatives. We used radial Glass patterns to 
provide form information about heading. These patterns 
contained pairs of dots positioned in such a way that their 
orientation is directed towards a common point corresponding 
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to the focus of expansion during the self-motion of the observer 
on a straight trajectory. The perception of structure in Glass 
patterns is supposed to proceed in two stages – a local one to 
determine the correspondence of dots in a pair and a global one 
to extract the global form.  

Glass patterns are regarded as providing similar information 
as the motion streaks occurring during real motion. Reference 
[8] showed that neurons in area MT and MST in macaque 
responded in a similar way to Glass patterns and to globally 
coherent motion. Reference  [9] showed that the local power 
spectrum of the Glass patterns possess anisotropy similar to the 
anisotropic changes in the local power spectrum of moving 
patterns. Several studies have demonstrated an interaction 
between the form information provided by the Glass patterns 
and motion information. For example [10] showed that when a 
sequence of stationary Glass patterns is presented in succession 
the form information preceded the motion information in 
discriminating concentric, radial and translation patterns. Their 
results suggest temporal summation of the form information in 
the dynamic Glass patterns that strongly influence the 
processing of information in the motion areas.   

Reference [11] showed strong influence of the orientation of 
the pairs in a Glass pattern on the perceived motion direction 
and apparent speed with larger effects at conflict angles between 
the motion direction and orientation about 30°. The perceived 
motion direction depended on the ratio of the strength of the 
pattern and motion signals.  

Reference [12] showed that when the form and the motion 
information provided by radial Glass patterns are in conflict, the 
perceived direction of heading determined by the 
focus-of-expansion of the moving pattern is shifted away and 
the information provided by the motion and form cues is 
optimally integrated. They claimed that these results imply that 
the form and motion cues are treated as independent sources of 
information for heading perception. The results were 
interpreted as interaction of form and motion information at 
both local level where the orientation of the pairs in the Glass 
patterns changes the perceived motion direction of the dots and 
at a global level where the focus-of expansion is determined as a 
combined estimate from its position based on the motion and 
form information. 

In the present study we separately estimated the ability of the 
observers to discriminate the shift in the heading direction 
simulated from radial Glass patterns or from moving radial 
patterns and their performance in the case when the form 
information in the Glass patterns coincided with the information 
from motion in a task in which the observers determine the time 
to response. In addition, we used a sequence of static Glass 
patterns that were partially replaced during their presentation in 
order to separate the contribution of spatial and temporal 
integration. Our pilot studies indicated that the performance in 
the combined condition greatly exceeded the predictions of the 
traditional models of optimal cue combination. For this reason, 
we choose quite impoverished conditions for the single-cue 
stimuli. Using a hierarchical drift diffusion model on the 

accuracy and response time data we were able to separate the 
contribution of the stimulus manipulations on the process of 
decision making. In addition, we studied the effect of aging on 
the decision making in heading discrimination depending on the 
available form and motion information.  

II. METHODS 

A. Stimuli 
 Four different types of stimuli were generated. All of them 

contained 50 dots that formed radial patterns and occupied a 
circular area of 13.5 cm diameter.  In the static condition the 
dots were grouped in 25 pairs. Eighteen pairs created a radial 
Glass pattern with a center shifted either to the left or to the right 
of the pattern middle-point; the rest 7 pairs were randomly 
oriented. Therefore, the coherence of the Glass patterns was 
72%. In the flicker condition a sequence of static radial Glass 
patterns of 72% coherence, similar to those in the static 
condition was generated. Each pair of dots in a pattern had a 
lifetime of 100 ms and was randomly repositioned after the end 
of its lifetime. However, on every frame only one-third of the 
dots changed position, thus no coherent flicker of the whole 
pattern occurred as the initial lifetime of the dots was uniformly 
distributed in the first three frames. In the motion condition the 
36 dots (72%) moved towards a common center on straight 
radial trajectories, while the rest 14 dots moved in random 
directions. As in the flicker condition, the lifetime of the dots 
was 100 ms and the initial lifetimes were uniformly distributed 
in the first free frames so that on every frame of the stimulus 
presentation only one-third of the dots changed position. All 
dots had equal speed of 3.6 deg/s, thus for their lifetime they 
travelled a path of 26’ length. The combined condition 
resembles the flicker condition as it contains 25 pairs of dots 
forming radial Glass pattern with 72% coherence and with 
limited lifetime of 100 ms. However, unlike the flicker 
condition, in the combined condition during its lifetime each 
pair of dots moved on a trajectory parallel to the orientation of 
the dots in the pair with a speed of 3.6 deg/s. In all conditions, 
when a dot or a pair was repositioned, it preserved its identity as 
a signal or noise.   

Example of a single frame of the stimuli from the motion 
condition and the static condition are shown in Fig. 1. A single 
frame of a stimulus from the combined or flicker condition 
looks like the one for the static condition. 

 

         
 
Fig.1 Single frame from stimulus from the motion (left) or 

static (right) condition. 
The radial Glass patterns or moving patterns simulated 7 
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different heading directions shifted to the left or to the right of 
the stimulus center. As the stimuli differed from the patterns 
created during self-motion on a straight path, in the sequel we 
will use the term “pattern center” to represent the focus of 
expansion of the radial patterns, though we will discuss the 
results with regard to heading estimation. The simulated shifts 
of the pattern centers were from 0.67 to 4.69 cm with a step of 
0.67.  

B. Procedure 
 The observers performed a single-stimulus two-alternative 

forced choice task.  
Each stimulus presentation started with a warning signal and 

a presentation of a red fixation point of 0.8 deg at the center of 
the screen. After 500 ms the dot disappeared and the stimulus 
was presented at the middle of the screen. The task of the 
observers was to continue fixating and to determine whether the 
pattern center was shifted to the left or to the right of the screen 
center. When they made a choice, the observers had to make a 
saccade towards the perceived pattern center and to press the 
left or the right mouse button depending on their choice.  

Each experiment started with a demonstration of the stimulus 
sequences.   

Each experimental condition: stimulus type and shifts of the 
pattern center were presented to each subject 20 times. The 
stimuli were generated offline. Their maximal duration could be 
3.3 s. In case the subject could not make a decision during this 
time, the stimulus disappeared and the screen remained gray 
until the subject made a response.  

The eye movements of the participants were recorded by Jazz 
novo eye tracking system (Ober Consuting Sp. Z o.o.). These 
eye movement recordings are not analyzed and included in the 
present paper.  

The stimuli were presented on a gray background with a mean 
luminance of 25 cd/m2. The stimuli were viewed binocularly 
from a distance of 57 cm and were presented on the computer 
screen operated in refresh rate 60 Hz and resolution 1280×1024 
pixels, 21” Dell Trinitron with Nvidia Quadro 900XGL graphic 
board.  

C. Subjects 
 35 observers participated in the experiments classified in 

three age groups: 12 young (19 to 34 years, median=23 years); 
11 middle aged (36 to 52 years, median=44 years); 12 old (57 to 
84 years, median =72).  

D. Statistical methods 
All statistical analyses of the study were performed using R 
[13]. Generalized linear mixed linear or probit regressions were 
performed using lme4 package [14]. Both types of regressions 
involved fixed and random factors with general form of the 
type: 

bβ δ= + +η X Z , 
where η is linear  predictor related to the mean response vector 
y through a link function , X and Z are fixed-effects and 
random-effects design matrices of the explanatory variables, 

β is the fixed-effects vector, b is the random-effects vector 
and δ is a model offset vector. For the mixed linear regression 
the link function that related the outcome variable y to η is the 
identity, and thus, the response variable is assumed to be 
normally distributed. For the mixed probit regression the link 
function is the inverse of the cumulative distribution function of 
the standard normal distribution 1( )−= Φη y . The probit 
model assumes that random errors have a multivariate normal 
distribution (e.g. [15]) 
The package car [16] was used to analyze the interactions in the 
fitted models and to represent in a more compact way the 
significance of the main effects and interaction terms. It 
provides Wald’s χ2-test [17]. 

III. RESULTS 

A. Response time 
We will consider first separately the effects of the 

experimental conditions on the response time and accuracy of 
the observers from the different age groups. Fig. 2 shows the 
distribution of the response times of the observers for the 
different stimulus types and age groups. The figure clearly 
shows that the older observers needed more time to make a 
decision about the shift of the pattern center from the screen 
middle-point. Moreover, the distribution of their response times 
is much broader that the distributions for the other age groups 
suggesting larger individual differences. In addition, the 
distributions of response times for either group or condition 
look normal. This observation was confirmed by Shapiro-Wilks 
test showing that the null hypothesis of normality could not be 
accepted for any of the distributions of the response time at 
p=.01.  

 
Fig. 2 Distribution of the response times for the different age 

groups and stimulus types 
In order to compare the effect of the experimental conditions 

on the response time for the different age groups we applied a 
linear mixed model regression on the log-transformed values of 
the response times in an effort to reduce the effect of the 
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violation of normality assumption. We used the absolute shift of 
the pattern center as a continuous predictor and the stimulus 
type and age group as categorical predictors. As random factors 
we considered uncorrelated random intercept and random slope 
within observers. The results of the analysis show a significant 
effect of the position of the pattern center on the response times 
(Wald’s χ2(1) =46.8; p<.01) due to the decrease in the response 
time with the shift of the position away from the screen center. 
This effect is similar for all age groups confirmed by the 
insignificant interaction between the shift of the pattern center 
and the age group (Wald’s χ2(2) = 1.76; p=.41). However, such 
a decrease in response time was not observed for the motion 
condition and is less apparent for the static condition than for 
the combined and flicker conditions. This difference resulted in 
significant interaction between the stimulus type and the shift in 
the pattern center (Wald’s χ2(3) = 213.43; p<.01) 

The age-group significantly affected the response time 
(Wald’s χ2(2) =44.81; p<.01) - the response times were shortest 
for the younger group and longest for the elderly. The stimulus 
type also significantly affected the response times (Wald’s χ2(3) 

= 1651.17; p<.01) with longest times obtained for the motion 
condition and shortest - for the static condition. The difference 
between the stimulus conditions is greater for the middle age 
group and least - for the younger participants leading to a 
significant interaction between the age groups and the stimulus 
type (Wald’s χ2(6) =229.04; p<.01). This effect is illustrated in 
Fig. 3. 

 
Fig.3. Averaged response times for the different age groups 

and stimulus types. The error bars represent the 95% confidence 
intervals of the estimates 

B. Performance accuracy 
We analyzed also the effect of the experimental factors on the 

ability of the observers to discriminate the relative shift of the 
pattern center. The proportion of responses “the center is shifted 
to the right” is presented on Fig. 4 for the three age groups and 
the different stimulus types. It is clear that the performance is 
worse in the single-cue conditions i.e. for the static and motion 

type. It is also evident that the young and the older observers are 
quite similar in their performance while the middle age group 
outperformed the other groups. 

 
Fig. 4. The average proportion “center shifted to the right” for 

the three age groups in the different stimulus conditions 
To evaluate the effect of the experimental factors on the 

performance of the observers we applied a generalized mixed 
effects probit regression on the subject’s responses with factors 
- relative shift of the pattern center as a continuous predictor and 
the age group and stimulus type as categorical predictors. An 
independent random slope and intercept were assumed for the 
different observers. The results of the analysis show significant 
main effects of the shift (Wald’s χ2(1) = 138.24; p<.01) and of 
the stimulus type (Wald’s χ2(2) = 8.62; p<.05). There was a 
significant interaction between the shift and the age group 
(Wald’s χ2(2) =7.98; p<.05) and between the shift and the 
stimulus type (Wald’s χ2(3) =1683.98; p<.01) confirming the 
observation that the sensitivity to pattern center position varies 
between the age groups and stimulus types. We estimated the 
threshold for discriminating the position of the pattern center for 
the three age groups and stimulus types using the slope of the 
probit regression. The confidence intervals of the thresholds 
were estimated by using a bootstrap estimation based on 200 
samples. The predicted thresholds based on optimal cue 
combination of the static and motion information was also 
obtained from the equation (1): 

2 2
2

2 2
motion static

comb
motion static

σ σσ
σ σ

=
+

, 

where 2
motionσ and 2

staticσ are the variances of the motion and 
static cues determining the discrimination thresholds. 
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Fig.5 Estimated thresholds for discriminating the shift of the 

pattern center for the different stimulus types and age groups. 
The error-bars represent the 95% confidence intervals of the 
estimates. The black dots in the subplot of the combined 
condition represent the estimated thresholds if the static and 
motion cue are optimally combined 

These data are presented in Fig. 5. The performance in the 
combined condition greatly exceeds the predicted performance 
based on the optimal cue combination from the single cue 
condition. The discrimination performance in the flicker 
condition is significantly improved as compared to the motion 
or static conditions but for all age groups it is lower than in the 
combined condition. Highest thresholds (lowest sensitivity) are 
observed for the static condition. The thresholds obtained in our 
study seriously exceed those obtain in other studies of heading 
perception for the motion condition. This can be due to the 
stimulus conditions used in the present study - very short motion 
trajectories due to the limited lifetime of the moving dots, low 
speed, and low number of moving dots, no speed gradient and 
no depth information. It is interesting to note also that the young 
observers as a group show lower sensitivity to differences in 
pattern position than the older group for the motion condition.  

C. Relation between accuracy and response time 
To understand better the performance of the observers we 

applied hierarchical drift diffusion model HDDM [18] to relate 
the accuracy and the response time of the subjects in the 
different experimental conditions. The model is based on the 
drift-diffusion model [19]. This type of models assumes that 
information supporting decisions is represented by noisy 
observations, and the decision-making is considered as a 
process of stimulus information accumulation or evidence over 
time.  

HDDM model uses prior information about the parameters of 
the drift diffusion process based on the values reported in 23 
existing studies of different decision-making tasks [20]. The 
hierarchical structure of the model allows the determination of 
the posterior group parameters and the individual parameters 
for each subject and condition from the distribution of the group 
estimates.  

We selected a model based on the assumption that both the 

decision boundary and the non-decision time depend on the age 
group and the stimulus type and on their interaction. For the 
drift rate we included as predictors in the model in addition to 
these factors a variable that represents the change in the 
difficulty of the task related to the magnitude of the shift of the 
pattern center from the screen middle-point. We considered all 
the cases when the absolute value of the shift was less or equal to 
2.68 deg as difficult and the rest of the cases as easy. In the 
modeling of the parameters of the drift diffusion model we used 
a within subject model with the combined condition as baseline 
for the stimulus type. We did not assume any bias for the starting 
point z of evidence accumulation, or any differences in it for the 
different age groups or stimulus types as we used 
accuracy-coding and there are no reasons that the observers 
would be more keen to give correct than incorrect answers or 
vice versa. We did not include any parameters related to the 
inter-trial variability. For the drift rate we were not able to 
evaluate the effect of the task difficulty due to the magnitude of 
the shift separately for each age group and stimulus type. We 
were able only to estimate the relative change in the drift rate for 
the hard condition (we used the easy condition as baseline) for 
the different stimulus types with respect to the combined 
condition. We specified that the outliers in the data were 5%.   

The model parameters were estimated with Markov Chain 
Monte-Carlo (MCMC) chain of 50K with 2K burn-in to achieve 
chain stabilization. The visual inspection of the traces for each 
model parameter and each subject showed that they appeared 
stationary, and the autocorrelation is nearly zero. In addition, a 
posterior predictive analysis was performed to evaluate whether 
the model captures important characteristics of the data. Five 
hundred posterior samples were used to simulate a different data 
set for each parameter value and the summary statistic of the 
simulated and the experimental sets were compared. In all cases, 
the simulated values fall into the 95% credible interval.  

The inclusion of different boundaries for the different 
stimulus types might be questionable. Our reasoning was that 
even though the task difficulty is expected to change the drift 
rate in the diffusion model, in more difficult conditions the 
observers might be more uncertain and would become more 
cautious. Indeed, our modeling results confirm the assumption 
that the boundary threshold will change depending on the 
stimulus type. Fig. 6 shows the distribution of the estimated 
boundary parameters for the three age groups and the different 
stimulus types.  
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Fig. 6. The estimated distribution of the decision boundary 

for the three age groups and the different stimulus conditions 
We estimated the probability that the boundary estimates for 

the different age groups and conditions differ. These 
comparisons can be seen in Tables 1 and 2. The results show 
that the elderly group needed more accumulated evidence 
before making a decision that is reflected in significantly larger 
values for the decision threshold boundary as compared to the 
young and middle group. The stimulus type affected 
predominantly the threshold boundary for the middle-aged 
group. However, contrary to our expectation that the threshold 
boundary will depend on the task difficulty, the major difference 
in the thresholds is due to the shrinkage of the boundary for this 
group in the static condition as compared to the other 
conditions. This may reflect the fact that only in this condition 
the available information does not change with time. 

 
Fig. 7. The distribution of the non-decision time in the 

HDDM model for the three age groups and stimulus condition. 
Fig. 7 shows the differences in the non-decision time 

associated with stimulus encoding and motor response 
preparation for the different age groups and conditions. As 

could be seen from the figure and Tables 1 and 2, the younger 
observers in all conditions needed less non-decision time and 
only in the static condition the probability of having longer time 
than the middle group is low, implying that they differ 
insignificantly. It should be noted that the results for the three 
age groups differ less in the static condition. The non-decision 
time differs only for the elderly observers with a probability of 
96% that the non-decision time in the motion condition exceeds 
the non-decision time in the static condition. 

Table1. The probability of differences between the estimated 
parameters of the HDDM model for the different stimulus type 
and age groups. The stimulus types are coded as m for motion, s 
– for static, f – for flicker and c – for combined condition. The 
age groups are coded as Y – for young, M – for middle, and O – 
for old 

 
 Decision boundary Non-decision 

time 
Drift rate 

 Y M O Y M O Y M  O 
m>f .58 .55 .48 .59 .78 .72 .003** .004** .03* 

m>s .90 .98* .69 .42 .78 .96* .44 .40 .71 

m>c .42 .30 .27 .63 .85 .71 .000*** .001*** .01* 

f>c .31 .25 .28 .52 .64 .49 .14 .04* .27 

f>s .88 .98* .71 .31 .48 .90 .998** .998** .98** 

c>s .95* .998** .85 .27 .32 .91 1.0*** 1.0*** .99** 

 
Table 2. The probability of differences between the parameters 
of the HDDM model between the age groups for the different 
stimulus types. The stimulus types are coded as M for motion, 
S – for static, F – for flicker and C – for combined condition. 
The age groups are coded as Y – for young, M – for middle, and 
O – for old 
 Decision boundary        Non-decision time                  Drift rate 

 Y>
M 

Y>O M>O Y>M Y>O M>O Y>
M 

Y>
O 

M>O 

M .10 .007** 0.8 .02* .0*** .001** .26 .86 .97* 

S .22 .0002*** .002** .06 .01* .08 .20 .96* .997** 

F .07 .002** 0.6 .02* .0002*** .003** .56 .98* .98* 

C .03* .002** 0.46* .01* .0*** .001** .41 .99* .994** 

For the drift rate we were able to evaluate the effect of 
stimulus type and the age group and their interaction only for the 
easy condition, while the effect of the task difficulty was 
estimated with respect to the combined easy condition for each 
age group and relative to the combined condition for the 
different stimulus types irrespective of the age group.  The 
distributions of the drift rates for the different age groups and 
stimulus type are shown in Fig. 8 for the easy condition. 
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Fig. 8. The distribution of the values for the drift rate in the 

easy condition for the three age groups and stimulus types 
Tables 1 and 2 and the figure show that drift rate of evidence 

accumulation is higher for the middle group as compared to the 
elderly, while the probability that the drift rate for the younger 
group is higher than the middle group is relatively low. An 
interesting result is that the probability of higher drift rate of the 
younger observers in comparison to the older group is less than 
90% for the motion condition. The results also show that the 
accumulation of evidence in the two single-cur conditions – 
motion and static do not differ. In the flicker condition the drift 
rate for the younger and older observers is similar to that in the 
combined condition while for the middle group there is a 
probability of 96% that the drift rate is higher in the combined 
than in the flicker condition. 

 
Fig.9.  The changes in the drift rate for the three age groups 

for the difficult condition 
The mean change in the drift rate for the three age groups for 

the hard condition was -.54 ±0.06, -.60±0.08 and -.34±0.08 for 
the young, middle and old group (Fig. 9) suggesting that the task 
difficulty reduces the drift rate and this reduction is lesser for the 
older group. The probability that these values are different 
significantly exceeds 95% only when the values are compared 
with the older group suggesting significantly less effect of the 
task difficulty for this age group. 

 
Fig.10. The changes in the drift rate for the motion, static and 

flicker conditions with respect to the combined condition for the 
hard task difficulty  

The results (Fig. 10) also suggest that the task difficulty has 
similar effect for the flicker condition as compared to the 
combined condition and significantly larger effect for the static 
and motion condition. However, the effect is positive implying 
that in comparison to the flicker and combined condition the 
shift of the pattern center away from the midpoint does not 
reduce the drift rate with the change in the task difficulty. 

 

IV. DISCUSSION 
The results of the presents study show that in comparison to 

the single-cue conditions – motion or static simulating heading, 
the discrimination of the pattern center greatly improves when 
the two cues provide consistent information. Shortest response 
times and lowest sensitivity were observed for the static 
condition. There are several reasons for this: the distance 
between the dots in a pair was very large (2°) and exceeds the 
receptive field size of the neurons in V1 where the local spatial 
integration is supposed to take place [21]. The density of the 
dots is also low and this may affect both the local and the global 
level of spatial integration. It could create spurious pairings. In 
addition, the observers have tighter decision boundary for this 
condition.  

The motion condition is also impoverished with respect to 
natural conditions for heading. The trajectory of the individual 
dots is too short, no depth information is provided, the density 
of the dots is not high and no speed gradient is present. While at 
[22] showed that the presence of speed gradient does not 
provide a strong cue for localizing the center of motion of the 
patterns, in [23] provided evidence that the amount of depth 
variation and number of texture elements in the scene, the 
location and amount of the visual field stimulated, and the 
position of the focus of expansion within the stimulus are 
important factors in heading determination from optic flow. In 
our impoverished conditions the position of the pattern center 
had little effect on the response time and could not be 
considered as a factor changing the task difficulty.  

Our data show that the sequential presentation of static Glass 
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patterns that partially overlap on every frame significantly 
improves the ability of the observers to judge to location of the 
pattern center. While the random repositioning of the dots 
induced apparent motion in random directions and might be 
expected to introduce significant noise, its effect seems to be 
cancelled which suggest temporal integration of the spatial 
information. The possibility of temporal integration in dynamic 
Glass patterns of different type has been emphasized in [10]. 
They have shown that the form information in the dynamic 
Glass patterns is temporally summated over ten frames and the 
performance improvement may be a result of the presences of 
multiple signals. In a similar vein, [24] showed that temporal 
integration improves heading estimation. In their study three 
types of noise were added to an optic flow stimuli: noise, 
uncorrelated in space and time as each dot path was randomly 
shifted in space and time on every frame; temporally correlated 
noise where the trajectory of motion of each dot was shifted by a 
random amount but remained the same during stimulus 
presentation and perturbation of the position of the heading 
diraction randomly on the successive frames that would prevent 
noise reduction by spatial integration. Their results suggest 
greater decrease in the performance when spatial integration is 
ineffective in noise reduction. In addition, their findings suggest 
that the temporal integration occurred for a limited time – up to 
about 200 ms. 

Our data for the combined condition contradict the 
predictions of optimal cue combination as performance is 
significantly better than expected. This result also differs from 
the findings at [7] that the performance in multisensory 
condition worsens when the observers determine the moment of 
making choice. Even though the response time in our study in 
the combined condition is less than for the motion condition, the 
observers performed much better than in the single-cue 
conditions or as predicted by optimal cue combination of the 
motion and static cues.  Their modeling of the drift rate in 
multisensory combination when subjects determined the 
response moment also predicts different drift rates than the ones 
we obtained from the HDDM (1.234, .614, and 1.026 for the 
middle, old and young observers based on the model of [7] and 
1.911, 1.110, and 1.855 – from HDDM modeling). 

One possibility to explain the excessive performance in the 
combined condition is to assume that the two cues are highly 
correlated even though [12] claim that form and motion could 
be regarded as independent cues in heading estimation from 
moving Glass patterns.  In [27] the conditions when the 
performance could exceed the prediction of optimal cue 
combination were considered. Their analysis shows that this 
could happened when the correlation ρ of the two cues is 
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the motion and the static cue are very similar which would 
suggest that the correlation should exceed or be very close to 1. 

The static condition differs from the rest of conditions used in 
our study in one important aspect – the information about the 
pattern center is fixed in the static condition, while the other 
tasks are of the type expanded judgement tasks [25] in which a 
new representation of stimulus elements in the sequence must be 
integrated with the memory representation of the preceding 
stimulus representation. As discussed in [25], little is known 
about the dependence of the memory process on the complexity 
of the stimulus elements, the time needed for it and how it might 
take place, the weight given to the recent information.  It is 
unclear whether the variability of the internal noise in the 
cognitive representation of the stimulus is equivalent to the 
variability in the sequence of stimulus elements. It seems likely 
that the variability introduced in the decision process is higher 
in the expanded judgement tasks. In this case, the drift rate 
would be expected to be lower as compared to the static case. 
However, our results contradict this expectation as in the 
combined and the flicker case the drift rate for all age groups is 
significantly higher than in the static condition. Another 
possibility is that the dynamic noise introduced by the 
sequential stimulus presentation delays the time at which 
evidence accumulation begins [26]. This would delay the 
leading edge of the response time distribution. Indeed, such a 
trend in visible in Fig. 2 for the motion as compared to the static 
condition, but not for the flicker and combined condition. 

The single cue conditions – static and motion provided very 
impoverished information about the heading direction. It is 
possible that the perceptual stimuli in these conditions provide 
equal evidence for the two alternative choices in most trials. 
Apparently, in our experimental conditions for the flicker and 
combined stimuli, the sequential presentation of the stimuli 
speed-up the process of decision-making. Thus, instead of 
increasing the variability of the accumulated evidence, a more 
appropriate explanation of our findings is the assumption that 
the reliability of the evidence improved with time due to spatial 
or temporal integration. The temporal integration could be 
considered as increasing the number of samples providing 
evidence for the position of the pattern center. 

A final point is related to the process of perceptual decision 
making and ageing. Several studies, including our own work 
[28] showed that certain aspects of motion integration 
processing deteriorate with aging. In addition, spatial and 
temporal processing also decline with age [29, 30].The results 
of the present study suggest that the elderly could compensate 
some of these deficiencies by using greater amount of evidence 
for making a choice and longer non-decision times. In this way 
they could achieve a performance that resembles the 
performance of the younger observers. However, the larger 
decision boundary could not explain the equivalent drift rate of 
evidence accumulation in the easy condition for the older and 
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the younger observers. This does not seem to be due to the 
slower speed of motion as our previous study [28] showed 
greater differences in noise tolerance between younger and 
older observers at the slower speed when the noise added to the 
stimuli was spatially and temporally uncorrelated. The 
similarity in the drift rate might be due to a mechanism of 
determining heading direction that is not based on wide-field 
radial structure of the local motion directions. As shown in [31], 
the localization of the center of motion in a radial optic flow 
pattern is not necessarily based on precise computation of radial 
motion direction, but could be estimated by circular template 
mechanism that minimizes a global motion error relative to the 
visual motion input.  

The results of the present study suggest that the elderly 
observers might have difficulties integrating the information in 
space as they were unable to benefit from the relative shift of the 
pattern center in the periphery that would allow easier 
discrimination of the left and right positions. In addition, both 
the non-decision time and the drift rate for the elderly group 
differ significantly from the younger one in the static condition.  
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